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Solar variability corresponds to strong variations of the solar irradiance, caused mainly by9

the presence of clouds. Practical uses of solar resource data, such as the design of pho-10

tovoltaic solar plants, usually employs several years of hourly data, neglecting subhourly11

features. The effect of clouds on short-time variability can differ by cloud type, suggesting12

that some cloud effects could be ignored when working with hourly data. In this work, we13

study compare statistics of solar variability calculated at different time intervals, and sepa-14

rate the analysis by cloud categories. We use 1 minute solar data and cloud radar products15

from the ARM CACTI campaign in Córdoba, Argentina, where a wide variety of clouds16

exist. We classify the clouds based on their vertical position and observe solar variability17

using the mean and standard deviation of the clear sky index for varying time intervals of 5,18

15, 30, and 60 minutes. Time intervals affect the mean and standard deviation of the clear19

sky index differently for each cloud type: longer time intervals neglect small variability20

and overestimate the mean clear sky index of low and mid clouds, while high clouds do21

not change as much. The effect is also palpable when measuring ramps: the percentile 9522

of the ramps obtained for 1 minute is 21 times greater compared to 1 hour. This ratio varies23

per cloud type, with the strongest differences occurring for mid clouds, having ramps that24

are 73 times stronger.25
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I. INTRODUCTION26

The inherent variability of the solar resource is a big challenge for increasing renewable energy27

penetration in the electric grid1. Variability can occur at different timescales: seasonal changes,28

diurnal changes, or at very short timescales of minutes or seconds2. In the PV industry, historical29

hourly data is typically used to design a plant, meaning that the variability at the longer timescales30

is captured and that the behavior at shorter timescales is usually neglected. Short term variability31

matters both at a local scale, affecting the performance of electrical equipment, and at a global32

scale, affecting the electric grid’s balance and economic dispatch when using hourly schedules3,33

which makes variability a challenge for increasing PV penetration.34

Quick changes in the solar resource are mainly caused by passing clouds. ‘A cloud can di-35

minish the solar irradiance that reaches the surface, or it can also augment in a process known36

as cloud enhancement, which occurs by forward scattering through thin clouds or on the sides37

of clouds4,5. The resulting variability is a compound effect of the optical properties of the cloud38

field, its spatial organization, its motion in space, as well as its own dynamics. Different types of39

clouds have distinct ways of evolving: some move with the wind without changing much, while40

others can either rise and grow, or dissipate in the span of an hour. Each location in the world41

has meteorological conditions that favor the existence of some clouds during the year, resulting42

in unique climatological records of cloudiness, thus of solar variability. Learning how each cloud43

type affects solar variability can facilitate a systematic analysis of cloud effects and expand it to44

other locations.45

Previous works have studied the link between solar variability and cloud type. Hinkelman46

et al.6 characterized solar ramps –the change of solar irradiance over a time interval– per cloud47

type. They used 1 min solar irradiance data from the SURFRAD network (continental US), and48

GOES satellite images with 30 min and 4 km spatial resolution to distinguish 12 cloud categories.49

They found that the features of the ramps are characteristic for each cloud type, leading to overall50

differences in each site due to the different frequency that they can display. Reno et al.7 used51

a GOES satellite product (GSIP) with 6 cloud types and hourly resolution, and 1-minute solar52

irradiance for 2 sites in the US, creating hourly statistics of average and standard deviation of the53

clear sky index. They found that different cloud types correspond to distinct variability features54

and ramp rates. Lohmann et al.8 characterized solar variability not only in time but also in space55

using a network of sensors in Germany, and classified sky conditions as clear, overcast or mixed56
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using the average and standard deviation of the clear sky index. They found that mixed conditions57

were linked to more variability and stronger ramps.58

The aforementioned studies have similar conclusions but since the cloud classes differ, it is hard59

to compare the results in a quantitative way. Satellite products have improved but their weakest60

feature is resolution both in time and space; therefore, they prevent us from having more detailed61

information on local cloud features. Ground-based methods for observing cloud properties also62

exist, including derived products from sky imagers, ceilometers, radars, and lidar. Currently, one63

of the most complete products can be obtained from radars, as they have great time resolution and64

can distinguish different layers of clouds. Very recent work has used these type of products to65

demonstrate improvements in solar variability forecasts9, with not much attention given to time66

resolution issue. Thus, exploring both satellite and ground products is important to complement67

our understanding of the link between cloud types and solar variability.68

The present work explores the dependence of the calculation of statistics of solar variability to69

time intervals and cloud types, using 1 minute resolution data. The high temporal resolution will70

allow us to determine the impact of neglecting sub-hourly features. The data is from the ARM71

CACTI campaign in Argentina, where a wide variety of clouds exist. The paper is structured as72

follows: Section II describes the data and methods to calculate solar variability and the cloud73

classification, Section III presents the main findings and analyzes the effect of time resolution, and74

Section IV contains the conclusions.75

II. DATA AND METHODS76

A. Data77

We use data from the mobile ARM CACTI (Cloud, Aerosol, and Complex Terrain Interactions)78

campaign in Córdoba, Argentina (32,12 ºS, 64.73º W) which was deployed during 2018-2019.79

This location was chosen by ARM due to its unique features, which display a large variety of80

cloud types: “orographic boundary layer clouds, deep convection, and some mesoscale systems81

uniquely observable from a single fixed site”10. The unique variety of cloud conditions makes it82

interesting not only for atmospheric research but also for studies on solar variability.83

For the solar resource, we retrieve the global horizontal irradiance (GHI) from the surface84

radiation product QCRAD1LONG11, which is available at 1 min resolution from 2018/9/23 to85
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FIG. 1. Statistics of the dataset and cloud classification scheme: a) histogram of the number of cloud layers,

with a maximum of 7, b) cloud base and top heights of the observations of single cloud layers (gray points),

with a visualization of the cloud classification (dashed red lines), c) histogram of cloud types, and d) the

histogram of the clear sky index kt (ratio between measured and clear sky global horizontal irradiance),

emphasizing the effect of the cases labeled as precipitating events.

2019/5/1. For the cloud properties, we use the ARSCLKAZRBND1KOLLIAS product, derived86

from radar and micropulse lidar results12, which can recognize up to 10 layers of clouds, detect-87

ing base and top heights with a resolution of 4 s. Due to the mismatch in time resolution, we88

downsample the cloud data to 1 minute using the nearest reading available.89

B. Cloud classification90

For each time, there can be be a number of cloud layers. Fig. 1a shows the histogram of the91

number of cloud layers present for the times considered in the study, where clear sky conditions92

and single cloud layers dominate.93

The cases with a single cloud layer are classified into 6 categories based on its cloud vertical94

position (Fig. 1b). Both cloud base and vertical extent are considered: low, low tall, and low taller95
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all have cloud base heights lower than 2 km but the latter 2 have top heights greater than 2 or 696

km, respectively. Similarly, mid and mid tall clouds have cloud base heights lower than 6 km but97

the latter has top heights greater than 6 km. Finally, high clouds correspond to cloud base heights98

greater than 6 km. Fig. 1c shows that the least common type are low taller clouds, which could99

correspond to extremely tall convective clouds like cumulunimbus. In this work, the classification100

is restricted to single cloud layers as they are the most common in this dataset and because multiple101

layers pose a greater challenge for a systematic analysis.102

Precipitation events can lead to incorrect readings of cloud base heights. Measured precipitation103

rates are available for this site but at an hourly rate which is not useful for our sub-hourly analysis.104

Therefore, we discard all events with readings of cloud base heights at the surface level. Even105

though this selection may also leave fog events out, we do not expect their exclusion to impact our106

results greatly. Fig. 1d shows the histogram for kt , where the events labeled as precipitation have107

a very low kt , indicating that they may indeed correspond to thick precipitating clouds.108

C. Clear sky index and rolling statistics109

We use the implementation of the Perez clear sky model in pvlib13,14 to obtain a clear sky110

irradiance GHIcs. We then compute the clear sky index kt = GHI/GHIcs. Daily values of Linke111

turbidity are found iteratively by finding a value that sets the clear sky index closer to 1 for the112

clear portions of the day.113

Due to errors in the clear sky model near sunrise and sunset, when the irradiance is low, kt can114

reach unrealistically high values. Therefore, we exclude the times with solar elevation lower than115

20◦, which is a common practice15. In our case, while this results in an estimated loss of 20%116

of the daytime data, there are still more than 6 hours available for a day in May, and since the117

removed hours are associated with lower energy generation their impact is not significant.118

Since the dataset has 1 minute resolution, we are able to compute rolling statistics of kt
2 for119

longer time intervals (∆t) of 5, 15, 30, and 60 min. We note that there is no resampling, meaning120

that all calculations use the 1 minute data. The average clear sky index, kt , and its standard121

deviation, σkt , are calculated at the center of each time interval ∆t with a trapezoidal method, as122

kt,i(∆t) =
1
∆t

i+n/2

∑
j=i−n/2+1

kt, j−1 + kt, j

2
δ t , and (1)123
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FIG. 2. Time series for January 21, 2019: a) measured and clear sky GHI at 1 min resolution, b) instanta-

neous clear sky index, c) normalized standard deviation of the clear sky index for different time intervals, d)

the vertical position of passing clouds (shaded areas cover cloud base to cloud top heights), and e) number

of cloud layers. Note that data with elevation greater than 20◦ has been omitted in b,c, and d).

124

σ
2
kt ,i(∆t) =

1
∆t2

i+n/2

∑
j=i−n/2+1

1
2
(
(kt, j−1 − kt, j−1(∆t))2 +(kt, j − kt, j(∆t))2)

δ t , (2)125

where i is the discrete time index, δ t is the data time resolution, and n = ∆t/δ t.126
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FIG. 3. Overall clear sky index statistics: a) shows the distribution of kt over time in the day. The distribution

of kt and time in the day is then separated per number of cloud layers (b,e), and by cloud categories (c,d,f,g).

III. RESULTS127

A. Sample day readings128

Fig. 2 shows the solar and cloud readings for January 21, 2019. This day had high clouds129

passing in the morning and low clouds in the afternoon, with up to 4 layers of clouds, and no130

precipitation (Fig. 2d,e). In this case, there is a noticeable difference: low clouds induce a stronger131

variability than high clouds. This effect is evident in Fig. 2a,b,c, with the normalized standard132

deviation σkt/kt being higher in the afternoon for all the time intervals considered. There is also133

a time window of nearly clear sky situations (kt ≈ 1) around 14:00 UTC, which corresponds to a134

period of scattered and presumably optically thinner high clouds (Fig. 2d).135

B. Overview of site conditions136

The observed distribution of kt at the site is bimodal (Fig. 1d), with a predominance of near137

clear conditions (kt ≈ 1). This is also evidenced in Fig. 1a, where a 55% of the times correspond to138

cloudless sky conditions. Regarding the number of cloud layers, a single layer is the most common139

(28.1%), followed by two (11.8%); three or more layers are less frequent (5.5%). Based on the140
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cloud classification performed for the cases with a single cloud layer (Fig. 1b,c), low clouds had141

the highest frequency (39.8%), followed by high (23.9%), low tall (15.5%), mid (14.6%), mid tall142

(5.3%), and, lastly, low taller clouds (<1%).143

Fig. 3a shows the distribution of kt as a function of UTC time, with the counts in a logarithmic144

scale due to the frequent clear or near-clear sky conditions found in this dataset. For early mornings145

and late afternoons we see a slight increase of kt , related to the errors that occur near sunrise and146

sunset, which were the reason to exclude lower elevation angles. There is a darker patch of lower kt147

in the evening hours meaning that there are more clouds impacting solar radiation in the afternoon148

than in the morning. We can further explore these features by looking at the statistics of only149

cloudy events.150

Fig. 3b,e shows the histograms of kt and UTC time, respectively, for cloudy events and by151

the number of cloud layers. Only single cloud layers show a bimodal distribution for kt , 2 layers152

or more display lower values of kt . In terms of time, 3 or more layers are much more frequent153

in the evening, while 1 and 2 layers show a slightly flatter distribution along the day but still an154

increasing frequency with time in the day.155

Finally, we can look the effect that each cloud type has on kt and their frequency throughout156

the day (Fig. 3c,d,f,g). The highest values of kt are linked mostly to high clouds and to some157

mid clouds. Mid tall and all low cloud types generally display lower values of kt , with low taller158

clouds exhibiting the lowest kt . The strong difference between low and high clouds is expected159

since the latter are often optically thinner16. High clouds are more frequent in the morning, while160

low and low tall clouds are more frequent in the evening, which could be a sign of them being161

surface-driven convective clouds such as Cumulus, which tend to develop in the afternoon when162

the surface heating is stronger. Low taller clouds seem to have a uniform distribution (but note the163

low number of samples), while mid and mid tall clouds are more frequent in the late morning and164

early afternoon.165

C. Solar variability and time intervals166

The variability measure σkt depends on the time interval considered. We will analyze this167

dependence first by looking at the overall relationship between σkt and kt , and then separating the168

analysis by cloud category.169

Fig. 4 shows the overall effect of the time interval on the joint distribution of kt and σkt .170
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FIG. 4. Joint distribution of the clear sky index mean, kt , and standard deviation, σkt , for different time

intervals, ∆t.

The time interval has a profound effect on both the mean and standard deviation of kt : longer time171

windows diminish the maximum values, and by smoothing out the temporal scales, a more defined172

pattern is seen in the parameter space. In other words, some information is lost: by comparing the173

5 and 60 minute statistics, the latter misses the concentration of events linked to small kt and σkt ,174

overestimating solar variability, finding more moments close to clear sky instances (kt ≈ 1), and175

completely missing events with middle values of kt and low σkt . While the effect is progressive176

with time interval, the differences between distributions are minor for 30 and 60 min. This solar177

variability conclusions are valid only for the site considered since the frequency of certain cloud178

types and clear days may affect different ranges of kt and σkt .179

We now separate the analysis, observing the time interval effect for each cloud category. Fig.180

5 shows the joint distributions of kt and σkt per cloud type and time window. First of all, statistics181

for the low taller clouds are included for completeness but the low number of samples does not182

give statistically significant results.183

The segregated analysis allows confirming that different cloud types occupy different regions184

of the parameter space. When looking at 5 min statistics, low and low tall clouds have a stronger185

presence in the left bottom region with lower clear sky index and lower variability. The distribution186

progressively changes with greater time interval, reducing the frequency of cases with short term187

variability. While the maximum frequency stays within that region for 15 and 30 min statistics, it188

is lost for the 60 min case, resulting in a more uniform distribution of kt and σkt . For high clouds,189

the 5 min statistics shows a stronger presence at the right bottom corner, with low variability and190

kt ≈ 1. Longer time windows increase the cases with more variability, likely through including the191

effect of nearby minutes. Overall, the distribution of high clouds is less affected by time interval,192

which confirms the tendency to be more spatially uniform. Lastly, mid and mid tall clouds occupy193
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FIG. 5. Joint distributions of kt and σkt by cloud type (rows) and time interval (columns).

a broader range in the parameter space, with 5 minute statistics peaking in the left and right bottom194

corners. Similarly to low clouds, the peak regions are quickly lost with longer time intervals.195

Summarizing, hourly intervals tend to overestimate variability because quick changes can be196

underrepresented. This effect is observed for all types of clouds but it affects low and mid clouds197

more strongly. Not only variability is misrepresented but also kt : it can be overestimated for low198

and mid cloud types. From a statistical point of view, the mean overestimation of clear sky index,199

comparing the hourly and 1 minute values, is not found to vary greatly across cloud types (no200

change for high clouds and 2-18% for the rest). However, a comparison based on means only is201

too simplistic as it neglects the fact that the distributions are not normal, with some displaying202
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FIG. 6. Cumulative distribution of GHI ramps per cloud type and time resolution

a bimodal behavior (for full details of the distributions and tabulated means and medians see203

Appendix A).204

D. Quantification of ramps205

Fig. 6 shows the cumulative distribution of GHI ramps, which has been typically reported in206

previous studies6. At a first glance, both time intervals and cloud type matter. On the one hand,207

the effect of time is the same in all cases, longer time intervals underestimate the strength of the208

ramps because it smooths out the quick sub-hourly features. On the other hand, we see that the209

strongest ramps are linked to mid clouds, followed by mid taller, then high and low clouds.210

We can further quantify the effect by comparing the percentiles 5 and 95, representing extreme211

values, shown in Table I. Longer intervals can greatly underestimate the strength of GHI ramps,212

with 1 minute ramps being up to 73 times stronger for mid clouds (p5), 37 times for low clouds213

(p95), and 31 times for high clouds (p5). The frequency of clouds and clear days at each particular214

site will determine the overall ramp distribution. For this case, the overall extreme ramps are 21215

times stronger for 1 minute intervals when compared to hourly ones.216

IV. CONCLUSIONS AND FUTURE WORK217

We have analyzed the sub-hourly features of solar variability and its relationship to cloud type218

and time intervals, using 1 minute solar data and cloud radar products from the mobile ARM219

campaign CACTI in Argentina. Single layer clouds were classified by their vertical position, and220
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Time All Low Low tall Low taller Mid Mid tall High

window p5 p95 p5 p95 p5 p95 p5 p95 p5 p95 p5 p95 p5 p95

1 min -95.5 93.5 -192.6 164.6 -64.8 62.4 -13.7 11.6 -286.9 261.4 -133.2 143.6 -117.0 117.6

5 min -35.8 33.7 -57.6 40.3 -43.8 29.1 -12.9 8.3 -60.2 59.8 -50.0 42.4 -34.7 38.2

15 min -14.5 12.5 -18.1 13.5 -18.0 11.2 -8.1 3.7 -19.8 21.1 -18.7 13.4 -13.0 14.2

30 min -7.8 6.4 -9.4 6.3 -10.2 4.7 -12.0 2.7 -7.1 10.0 -8.0 9.9 -6.7 7.7

60 min -4.8 4.3 -5.7 4.4 -7.2 3.3 -7.9 1.5 -3.9 5.4 -4.4 5.5 -3.7 5.2

TABLE I. Statistics of the GHI ramps in W m−2 min−1, per cloud type and per time interval, where p5 and

p95 correspond to percentiles 5 and 95 of the observed data.

time intervals of 5, 15, 30 and 60 minutes were used to compute rolling statistics of the clear sky221

index (the mean kt and the standard deviation σkt ).222

This site shows a majority of clear conditions, followed by single clear layers. Each cloud type223

is associated with a different distribution of clear sky index and time of the day.224

Solar variability was studied through the joint distribution of kt and σkt , finding that the choice225

of time interval profoundly affects the distribution for each cloud type. Longer time windows over-226

estimate σkt because they underrepresent the smaller scale dynamics, and they also overestimate kt227

for the low and mid clouds, while high clouds properties are not as affected by temporal aggrega-228

tion. Secondly, we quantified the change in GHI ramps with time interval and for each cloud type.229

The extreme values, quantified by percentiles 5 and 95, decrease with longer intervals, as expected230

but the effect varies per cloud type. Mid clouds generate the strongest ramps, with extreme ramps231

that are 71 times stronger when comparing 1 min data to hourly data. For comparison, the same232

ratio for all sky conditions is 19 times.233

While this work did not resample the data to reproduce variability statistics based on hourly234

data, we expect those statistics to also overestimate both kt and σkt , probably at higher rates since235

the time intervals will not be shorter than 1 h and quick changes are filtered out. As more cloud236

products with high resolution become available, future work should aim to improve cloud classifi-237

cations and other variables such as cloud optical thickness at finer time resolutions. The effects of238

multi layered clouds have also been left for future work, as more data would be preferred for statis-239

tical approaches. Finally, as the work by Riihimaki et al.9 has shown, solar variability forecasting240

should be pursued with different techniques and cloud characterization methods.241
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Appendix A: Quantifying the overestimation of irradiance and variability252

We have seen that for some cloud types, coarser time windows can lead to greater kt and σkt . In253

order to report the mean overestimation, we show in Fig. 7 the marginal distributions of kt and σkt254

per cloud type and time window, and in Table II the corresponding mean and median values. In a255

broad sense, we find that the mean kt overestimation varies 2%-18% in all cloud types but the high256

clouds, for which there is no change. Nevertheless, many distributions are not normal and even257

bimodal and consequently, the mean values can misrepresent the changes in their distributions.258

Complementing with the median values, these are found to vary in a broader range (3%-29%),259

with a decrease occurring only for for high clouds, of 4%. For σkt , the changes between 5 min and260

hourly windows are greater, with mean / median values being at least 2 / 2.5 times greater.261
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